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Why examine this toy system—or is it a toy? The classical 2-body problem, in
its simplest form (no spin), asks for the time-dependence of twelve variables

x, y, z, pz, py, pz for each of two particles

but by standard reduction leads promptly to an “equivalent one-body problem”
in which only six variables

x, y, z, pz, py, pz

remain lively: those serve to describe the “motion, relative to the center of
mass, of one hypothetical particle of reduced mass m = m1m2

m1+m2
.” If

• externally impressed forces are absent, and if moreover
• the force of particle-particle interaction is central,

then the orbit is confined necessarily to a plane, and we find ourselves watching
only four variables

x, y, px, pz

Physics is rooted historically in one particular instance

H(px, py, x, y) = 1
2m (p2

x + p2
y)− k√

x2+y2
(1)

of the problem thus posed.

The reduced Kepler problem (1) relates to some real physics: it describes
the paths along which the planets prefer to wander, fills the night sky with conic
sections. But it presents only one subtle allusion to the fact that those plane
figures are drawn on cross-sections of three-dimensional space: the implied force
law

F ∼ 1
r2 becomes “geometrical”/intelligible only in Euclidean 3-space

‡ Text of a Reed College Physics Seminar presented on  February .



2 Classical /quantum dynamics of 2-dimensional hydrogen

Apart from that detail, the third dimension stands by as mere spectator while
we pursue our celestial mechanical calculations. It becomes in this light a bit
difficult to understand why the ancients became so preoccupied with spheres,
since their experience presented them with only one fairly fanciful “celestial
sphere,” but a lot of inscribed planes—“circles,” if you will.

I speak today of the “hydrogen problem” (Waßerstoff) rather than of the
“Kepler problem” because I have in mind also its quantum mechanical variant.
Atomic physics came into being as “celestial mechanics writ small” with the
publication of Neils Bohr’s “On the constitution of atoms and molecules.”1 A
point to which I would draw attention is that Bohr—inventing what came to be
called the “old quantum theory” as he went along, and taking (1) as his point of
departure—worked in the orbital plane. For circular orbits classical mechanics
supplies

kinetic energy = 1
2

L2

ma2

where a denotes the orbital radius and ma2 is, in effect, a “moment of inertia.”
By the virial theorem2 one has

〈kinetic energy〉 = n+1
2 〈potential energy〉 if V (r) ∼ rn+1

= − 1
2

{
− k

a

}
in the hydrogenic case: n = −2

giving
a = L2

mk

whence
E = 〈kinetic energy〉+ 〈potential energy〉

= n+3
2 〈potential energy〉

= − 1
2

mk2

L2

and by formal substitution L �→ n� Bohr is led to the correct energy spectrum

En = −mk2

2�2
1

n2 : n = 1, 2, 3, . . . (2)

What makes this result so remarkable is that the “new quantum theory”
would proceed from (1) to a Schrödinger equation

{
− �

2

2m

[(
∂
∂x

)2+
(

∂
∂y

)2
]
− k√

x2+y2

}
ψ(x, y) = Eψ(x, y) (3)

which, as we will see, yields an incorrect spectral formula:

En = −mk2

2�2
1

(n− 1
2 )2

: n = 1, 2, 3, . . . (4)

1 Phil. Mag. 26, 1, 476, 857 (1913).
2 See H. Goldstein, Classical Mechanics (2nd edition, ), p. 85.
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To reproduce and improve upon Bohr’s success, Schrödinger himself had to work
in three dimensions, from

{
− �

2

2m

[(
∂
∂x

)2+
(

∂
∂y

)2+
(

∂
∂x

)2
]
− k√

x2+y2+z2

}
ψ(x, y, z) = Eψ(x, y, z) (5)

We come thus to the crooked conclusion that the Hamiltonian (1)
• refers classically to some real physics, but
• is quantum mechanically artificial.

The 3rd dimension is a classical spectator, but is quantum mechanically an
active participant. We can understand this odd development on grounds that
quantum mechanics is not a theory of orbits but a field theory , and the ψ-field
samples the entire configuration space. That observation leaves unanswered,
however, this seldom-asked question: How did Bohr—armed only with his own
toy anticipation of a quantum theory—manage to enjoy such success (and what
would have been the future of physics had events turned out otherwise)?

Today I will attempt to demonstrate that “2-dimensional hydrogen,” toy
system though it be, has nevertheless much of the first importance to teach us.

1. Classical background: Liouville systems & Euler’s “problem of two centers”.
In  Liouville drew attention to the fact that systems of the Lagrangian
design

L = 1
2u·

[
q̇2
1 + q̇2

2 + · · ·+ q̇2
n

]
− w1(q1) + w2(q2) + · · ·+ wn(qn)

u

u ≡ u1(q1) + u2(q2) + · · ·+ un(qn)

give rise to equations of motion from which it is (by clever analysis) possible “by
quadrature” (meaning “provided one can perform certain integrals”) to obtain
exact closed-form descriptions of the trajectory pursued by the system.3 Those
trajectories are classified by specification of
• the energy E;
• the values of certain separation constants

{
ε1, ε2, . . . , εn

}
:
∑

εi = 0.

In the larger work from which this short account is taken I have shown
that
• Liouville systems yield Hamilton-Jacobi equations which are invariably

separable, but (trivialities aside)
• Liouville systems yield separable Schrödinger equations only in the

2-dimensional case.

Liouville’s accomplishment made it possible to attribute Euler’s successful
analysis (–) of the “2-dimensional two centers problem”

H(px, py, x, y) = 1
2m (p2

x + p2
y)− k1√

(x−a)2+y2
− k2√

(x+a)2+y2

3 See E. T. Whittaker, Analytical Dynamics (), §43.
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to the circumstance that the system acquires Liouville’s form4 when rendered
in confocal conic coordinates, which are defined

x = a cosh ξ cos η
y = a sinh ξ sin η

}
(6)

and illustrated in Figure 1. It will be appreciated that the path pursued by a
particle in the presence of two force centers is, in general, not planar ;5 Euler
looked, therefore, to an unstable special case of the actual physical problem
(and apologized for doing so. . . as also, a few years later, did Lagrange).

The Euler problem gives back the Kepler problem when one force center
is turned off: k2 ↓ 0. This elementary observation carries the seldom-remarked
implication that

The 2-dimensional Kepler problem is separable in the sense of
Liouville (“Liouville separable”) in infinitely many confocal
conic coordinate systems; namely, those with one focus at
the force center (shifted origin) and the other anywhere (see
Figure 2).

From which it follows more particularly that
The 2-dimensional Kepler problem is Liouville separable in
the “log-polar coordinate system”

x = aes cos θ
y = aes sin θ

}
(7)

into which all confocal conic coordinate systems degenerate
when the foci coalesce: a ↓ 0 (see Figure 3)

and, in the opposite limit, that
The 2-dimensional Kepler problem is Liouville separable in
the “parabolic coordinate systems”

x = 1
2 (µ2 − ν2)

y = µν

}
(8)

into which all confocal conic coordinate systems degenerate
when one focus is installed at the origin and the other
removed (in whatever direction) to infinity.

I have used Liouville’s methods to establish (though the point is almost
obvious) that every Keplerean orbit can be identified with a curve-of-constant-
coordinate in one or another of the confocal conic coordinate systems.

4 For the demonstration, see §1 in my “Kepler problem by descent from the
Euler problem” (Seminar Notes ).

5 See Eli Snyder’s thesis () for display of some non-planar orbits.
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Figure 1: Confocal conic coordinate system. ξ is constant on each
ellipse; η is constant on each hyperbolic quadrant. The location of
the foci is apparent. The figure was generated by (6) with the aid
of Mathematica’s ImplicitPlot package.

Parabolic separation of the Kepler problem played, in fact, an important
role in the history of quantum mechanics. For P. S. Epstein had noticed already
in  that if one Eulerean force center is made progressively stronger as it is
removed to infinity, then one will be left at the stationary force center with a
parabolic description of a Keplerean system in the presence of a uniform field .
Epstein used this idea to construct, in language of the Old Quantum Theory,
an account of the Stark effect, and his success made an impression upon the
minds both of Schrödinger and of the young Wolfgang Pauli. . .with telling
consequences, as will soon emerge.

2. Hidden symmetry in the classical theory. As we have seen, Liouville’s method,
in the n -dimensional case, yields n− 1 separation constants and an associated
population of “conserved observables:”

εi = conserved value of Gi(p1, . . . , pn, q1, . . . , qn) : [H,Gi] = 0
i = 1,2,...,n−1

When the system yields to Liouville separation in several distinct coordinate
systems one is led to correspondingly many distinct populations of conserved
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Figure 2: Keplerean modification of the confocal conic coordinate
system. The standard system has been first translated (top figure)
so as to place a focus at the origin (force center), and then rotated
(bottom figure). The heavy ellipse alludes fact that one can always
identify Keplerean orbits with curves-of-constant-coordinate.

observables. That, we expect, will be a rare occurance, but the 2-dimensional
Kepler problem provides an example; one finds that

confocal conic separation −→ G = ma2H + maKx + 1
2L

2
z

↓
log-polar separation −→ G ∼ Lz ≡ xpy − ypx

parabolic separation −→ G ∼ Kx ≡ 1
mpyLz − kx 1√

x2+y2

Thus does Liouville’s formulation of the Kepler problem lead automatically to
• the only component of LLL ≡ rrr × ppp relevant to the 2-dimensional problem;
• one component of the Runge-Lenz vector KKK ≡ 1

m (ppp×LLL )− k
r rrr.

Angular momentum LLL was invented by Euler during the ’s, and its
conservation arises (Noether’s theorem) as a expression of the overt rotational
symmetry of a physical system; Lz(px, py, x, y) is the Lie generator of canonical
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Figure 3: Cartesian, log-polar and parabolic limits of the confocal
conic coordinate system, got by
• magnifying the region near the origin (top),
• placing the foci very close together (middle)
• magnifying the region near the one focus (bottom).
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transformations within 4-dimensional phase space which, when projected onto
the

{
x, y

}
-plane, acquire the form

orbits −→ rotated orbits of the same energy

The story of KKK is in several respects more interesting: the existence of such
a Keplerean conservation law was known to Laplace already in , and was
rediscovered by Hamilton in . Laplace’s conserved observables (components
of KKK ) were assembled into a vector for the first time by Gibbs, to demonstrate
the utility of his new “vector analysis.” Runge’s contribution () derived
from Gibbs,’ and was similarly expository, but led Lenz in  to the first
quantum mechanical application of Laplace’s creation. Lenz’s constribution is
of enduring interest only because it engaged the attention of Pauli (see below).
The observables Kx(px, py, x, y) and Ky(px, py, x, y) are generators of canonical
transformations6 which in projection acquire the form

orbits −→
{

orbits of the same orientation and energy
but of altered eccentricity

and are made possible this circumstance:
The Kepler system and isotropic harmonic oscillator are the
only systems endowed with the property that all bounded
orbits close upon themselves.7

Given a population of conserved observables, it becomes natural to look
for structure in the group of transformations which they serve collectively to
generate. We therefore compute the Poisson brackets

[Lz,Kx] = Ky

[Ky, Lz] = Kx

[Kx,Ky] = − 2
mH · Lz

and notice that
• we have been led automatically to the “missing” component of KKK, and
• by its inclusion we have achieved algebraic closure.

Within the “elliptic sector” of phase space (to which I henceforth confine my
attention) − 2

mH can be manipulated as though it were a positive constant; we
are therefore permitted to define

Jx ≡ Kx

/√
− 2

mH

Jy ≡ Ky

/√
− 2

mH

Jz ≡ Lz




(9)

6 I do not know how to obtain KKK from Noether’s theorem, and the detailed
design of KKK leads me to think that such an effort would require fundamental
generalization of Noether’s theorem.

7 This is the upshot of Bertrand’s theorem (). Goldstein provides a
detailed proof in his Appendix A (), but see also §§4.4/5 of J. L. McCauley,
Classical Mechanics: Transformations, Flows, Integrable & Chaotic Dynamics
().
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and to observe that
[Jx, Jy] = Jz

[Jy, Jz] = Jx

[Jz, Jx] = Jy


 (10)

mimic the commutation relations satisfied by the generators J1, J2 and J3 of
the 3-dimensional rotation group O(3). In the “hyperbolic sector” of phase
space (where the scattered orbits live) one is led, by modification of the same
argument, to the Lorentz group O(1, 2).

The O(2) symmetry of the 2-dimensional Kepler system is overt, written
in physical space for all to see. But

{
Jx, Jy, Jz

}
generate within 4-dimensional

phase space a representation of O(3) which is covert—a “hidden symmetry.”8

We have encountered in interconnection amongst
• multiple separability,
• orbital closure, and
• hidden symmetry

which in its evident depth and obscure elegance is somewhat reminiscent of the
interconnections which relate
• spin (whether integral or fractional),
• multiparticle wavefunction design (whether symmetric or antisymmetric),
• algebra of field operators (whether commutator or anticommutator).

It is a measure of the man that Pauli was a major player in the creation of both
of those conceptual groupings.

3. 2-dimensional analog of Pauli’s argument. In —very shortly after the
appearance of Heisenberg’s “matrix mechanics,” and prior to the appearance of
Schrödinger’s “wave mechanics”—Wolfgang Pauli (then  years old) published
an algebraic theory of the hydrogen spectrum9 of which Schiff gives a good
account,10 but which I describe now as it relates to “2-dimensional hydrogen.”

We have
H = 1

2m

[
p2

x + p2
y

]
− k

[
x2 + y2

]− 1
2

and the definitions

Lz = x py − y px

Kx ≡ + 1
2m

[
pyL + L py

]
− k x

[
x2 + y2

]− 1
2

Ky ≡ − 1
2m

[
pxL + L px

]
− k y

[
x2 + y2

]− 1
2

8 For real hydrogen, O(3) is the overt symmetry, while the hidden symmetry
is O(4) on the elliptic sector, but the Lorentz group O(1, 3) on the hyperbolic
sector.

9 W. Pauli, “Uber das Waßerstoffspektrum vom Staandpunkt der neuen
Quantenmechanik,” Z. Physik 36, 336 (1926).

10 L. I. Schiff, Quantum Mechanics (3rd edition ), §30.
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—the latter of which Pauli was content to borrow from Lenz. With the major
assistance of Mathematica we establish the following commutation relations:

[ H, Lz ] = [ H,Kx ] = [ H,Ky ] = O

[ Lz ,Kx ] = +i� Ky

[ Ky , Lz ] = +i� Kx

[ Kx,Ky ] = −i� 2
mH Lz

Within each eigenspace of H we can replace the operator by its eigenvalue E,
which for bound states is negative. It makes sense, therefore, to mimic our
classical practice, writing

J1 ≡ Kx

/√
− 2

mE

J2 ≡ Ky

/√
− 2

mE

J3 ≡ Lz




(11)

in terms of which we have (compare (10))

[
J1, J2

]
= i� J3[

J2, J3

]
= i� J1[

J3, J1

]
= i� J2


 (12))

These mimic the commutation relations satisfied by the familiar Pauli matrices
(which were invented a couple of years later, and in another connection: the non-
relativistic theory of spin), which are the generators not of O(3) but of SU(2),
and support the “spinor representations” of the rotation group. Classical
physics and quantum physics appear at this point to have diverged.

Returning to Pauli’s line of argument: it follows immediately from (12)
that

[
J2, J1

]
=

[
J2, J2

]
=

[
J2, J3

]
= O with

J2 ≡ J2
1 + J2

2 + J2
3

= L2 − m
2E K2

But quantum mimicry11 of the classical identity K2≡K2
x + K2

y = 2
mHL2 +k2

gives

K2 ≡ K2
x + K2

y = 2
mH ( L2 + 1

4�
2I ) + k2 I

11 This activity is much easier to talk about than to accomplish; the assistance
of Mathematica is indispensable, but no “Symbolic Non-commutative Algebra”
package is yet available. My improvisatory technique is clumsy, though vastly
faster and more accurate than pen-and-ink.
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so within each energy eigenspace we have

J2 = L2 − m
2E

{
2
mE ( L2 + 1

4�
2I ) + k2 I

}
= −

[
1
4�2 + mk2

2E

]
I (13)

Borrowing now from the algebraic formulation of the 3-dimensional quantum
theory of angular momentum12 we know that

J2 has eigenvalues j(j + 1)�2 with j = 0, 1
2 , 1,

3
2 , 2, . . .

and that
the eigenvalue j(j + 1)�2 is (2j + 1)-fold degenerate

Returning with this information to (13) we obtain

−mk2

2E =
[
j(j + 1) + 1

4

]
�

2

= 1
4 (2j + 1)2�2

which can be written

E(j) = −4mk2

2�2
1

(2j+1)2

= −4E0
1

(integer)2 (14)

I reported at (4) that solution of the Schrödinger equation (3) yields

E = −4E0
1

(odd integer)2 in the 2-dimensional case (15)

while Bohr/Pauli/Schrödinger obtained

E = −E0
1

(integer)2 in the 3-dimensional case

Consistency of (14) with (13) requires that we must exclude fractional j-values:
we must, in short, exclude precisely the representations which distinguish SU(2)
from O(3). The classical/quantum physics of 2-dimensional hydrogen would be
brought thus back again into agreement.13

But what principle serves to enforce such an exclusion? Exclusion of
algebraically predicted states (of fractional angular momentum) is standardly
accomplished by imposition of a requirement that the associated eigenfunctions
be single-valued. I turn now, therefore, to discussion of the physical solutions
of the Schrödinger equation.

12 See, for example, Schiff’s §27, Mertzbacher’s Chapter 16, or §§4.3 & 4.4 in
D. Griffiths’ Introduction to Quantum Mechanics ().

13 It is now easy to understand how confusion on this point might arise, as
historically it did arise. For detailed discussion and references see A. Cisneros &
H. V. McIntosh, “Symmetry of the two-dimensional hydrogen atom,” J. Math.
Phys. 10, 277 (1969).
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4. Polar separation of the hydrogenic Schrödinger equation. In standard polar
coordinates

x = r cos θ
y = r sin θ

the Schrödinger equation (3) reads{
− �

2

2m

[
1
r

∂
∂r r

∂
∂r + 1

r2

(
∂
∂θ

)2 ]
− k

r

}
ψ = Eψ

which by ψ = R(r) · Y (θ) separates to become{
1
r

d
dr r

d
dr + 2m

�2

[
E + k

r

]
− λ

r2

}
R(r) = 0(

d
dφ

)2
Y (θ) = −λ · Y (θ)

The argument proceeds now along familiar lines,14 and leads to results which I
summarize as they relate by “dimensional retraction”

2-dimensions ←− 3-dimensions

to their 3-dimensional counterparts. First we have

circular harmonics Y�(θ) ←− spherical harmonics Y m
� (θ, φ)

where Y�(θ) ∼ ei�θ are single-valued eigenfunctions of the angular momentum
operator Lz = �

i
∂
∂θ : Lz Y�(θ) = �2 ·Y�(θ) with 2 = 0,±1,±2, . . . Insertion of

λ = 22 into the radial equation gives

Rn�(r) ∼ e−
1
2 xx|�|L2|�|

n−|�|−1(x) ←− Rn�(r) ∼ e−
1
2 xx�L2�+1

n−�−1(x)

which is function-theoretically modest on its face, but note: the dimensionless
variable x acquires a retracted definition

x = 2
n− 1

2
(r/a0) ←− x = 2

n (r/a0) : a0 ≡ �
2

mk=“Bohr radius”

which at n = 1 reads x = 4(r/a0) ← x = 2(r/a0); the radial function Rn�(r)
has been rendered spatially more compact . Which is a little surprising, for the
Bohr model is, as I have pointed out, “effectively 2-dimensional,” yet gives
“orbits of the correct diameter” (by which we really mean only that it gives the
observed spectroscopy). This development is consistent with

En = −E0
1

(n− 1
2 )2

←− En = −E0
1

n2 : n = 1, 2, 3, . . .

since tighter orbits should have lower energy.

14 See B. Zaslow & M. E. Zandler, “Two-dimensional analog to the hydrogen
atom,” AJP 35, 11118 (1967), but beware the many misprints.
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Figure 4: Degeneracy of the energy spectrum of 2-dimensional
hydrogen. In the upper display n runs ↑, 2 runs ↔. In the lower
display—designed to mimic the virtues of Figure 5—n runs ↑, 2
runs ↘ and the ↗↙ axis distinguishes states with respect to helicity
(distinguishes +2 from −2).
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Figure 5: Spectral degeneracy of 3-dimensional hydrogen. The
principal quantum number n runs ↑, 2 runs ↘ and m runs ↗↙.
Symmetry with respect to rotations in physical 3-space accounts
only for the equivalence of states of a given 2, which fold among
themselves to yield (22 + 1)-dimensional respresentations of O(3).
All n2 states on the nth tier fold among themselves to yield
representations of the “accidental symmetry” group O(4), with
generators

{
Lx, Ly, Lz,Kx,Ky,Kz

}
. O(4) is here an instance of a

symmetry which arises not from overt geometrical considerations,
but from the collective structure of the equations of motion (lives not
in configuration space, but in phase space); such groups are called
“dynamical groups.”

The preceding analysis yields simultaneous eigenfunctions of H and Lz, and
accounts successfully for the enforced exclusion of the algebraically predicted
states j = 1

2 ,
3
2 ,

5
2 , . . . But the argument exposes mysteries of its own: that the

states |n,+2) and |n,−2) have the same energy follows transparently from the
overt O(2)-symmetry of the physical system, but the analysis leaves unexplained
why states of different 22 should have the same energy , as illustrated in Figure 4.
“Accidental degeneracy” is present in the 2-dimensional hydrogen spectrum,
just as it is present in the energy spectrum of real hydrogen. Such symmetry is
a symptom of some “hidden symmetry” to which the analysis—which proceeds
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without reference to K-conservation—does not allude.15 Those are precisely the
aspects of the problem which are illuminated when one looks to. . .

5. Parabolic separation of the hydrogenic Schrödinger equation. Schrödinger
himself developed this topic already in , and obtained 3-dimensional results
which are reviewed in most of the better texts.16 All authors emphasize the
special suitability of parabolic separation when perturbations (Stark effect,
Zeeman effect) install cylindrical symmetry in place of spherical symmetry, and
also in connection with the desription of radiative/scattering processes. And
all authors take their parabolic coordinates to be those defined in connection
with Figure 6.

In 2-dimensional theory it proves advantageous, however, to respect the
requirements of Liouville separability; we work, therefore, with the parabolic
system introduced at (8), and are led straightforwardly from (3) to the separated
equations {

− �
2

2m

(
d
dµ

)2 − Eµ2 − k1 − ε1
}
M(µ) = 0{

− �
2

2m

(
d
dν

)2 − E ν2 − k2 − ε2
}
N(ν) = 0

in which k1 + k2 = 2k, ε1 + ε2 = 0. These equations can be written

{
− �

2

2m

(
d
dµ

)2 + 1
2mω2µ2

}
M(µ) = (k1 + ε1)M(µ){

− �
2

2m

(
d
dν

)2 + 1
2mω2 ν2

}
N(ν) = (k2 + ε2)N(ν)


 (16)

1
2mω2 ≡ −E : positive for bound states

and—remarkably—place us in position to make formal use of the familiar
quantum theory of isotropic oscillators; immediately

k1 + ε1 = �ω(n1 + 1
2 ) : n1 = 0, 1, 2, . . .

k2 + ε2 = �ω(n2 + 1
2 ) : n2 = 0, 1, 2, . . .

↓
2k = �ω(n1 + n2 + 1) giving E = −4mk2

2�2
1

(n1+n2+1)2 (17)

15 One acquires interest at this point in adjustments—inclusion of relativistic
effects, or moving farther down the first column of the periodic table—which
might serve to break the hidden symmetry without breaking the overt rotational
symmetry of the system.

16 See, for example,
D. Bohm. Quantum Theory (),§58;
L. D. Landau & E. M. Lifshitz, Quantum Mechanics (), §37;
L. I. Schiff, Quantum Mechanics (3rd edition ), pp. 95–98;
E. Merzbacher, Quantum Mechanics (2nd edition ), pp. 245–250;

or H. A. Betha & E. Salpeter, Quantum Mechanics of One- and Two-Electron
Atoms (), §6.
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Figure 6: Representation of the parabolic coordinate system

x = 1
2 (µ− ν)

y =
√
µν cosφ

z =
√
µν sinφ

standard to 3-dimensional work. The figure shows a
•

{
ν, φ

}
-coordinatized paraboloid of constant µ (opens left);

•
{
µ, φ

}
-coordinatized paraboloid of constant ν (opens right);

•
{
µ, ν

}
-coordinatized plane of constant φ.

The Cartesian frame has been erected at the shared focus, which in
the Keplerean application becomes the “force center.”
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which reproduces the upshot of (14), and presents the same population of
supernumerary spectral values as the spectrum to which Pauli’s method led .

Look, however, to the associated eigenfunctions: borrowing again from
oscillator theory17 we have

Mn1(µ) ∼ e−
1
2 (αµ)2Hn1(αµ)

Nn2(ν) ∼ similar

where
α ≡

√
mω
�

=
[
− 2mE

�2

] 1
4 = 1√

a0

[
2

n1+n2+1

] 1
2

has (as required) the dimensionality of (length)−
1
2 and—in stark contrast to

the situation in oscillator theory—a meaning which is specific to each energy
eigenspace. That important detail understood. . .we have been led by the
“oscillator trick” to (unnormalized) hydrogenic energy eigenfunctions of the
form

Ψ(µ, ν) = e−
1
2 α2(µ2+ν2)Hn1(αµ)Hn2(αν)

It is, however, an implication of (8) that{
µ, ν

}
and

{
− µ,−ν

}
refer to the same point

{
x, y

}
We are obligated, therefore, to impose the single-valuedness condition

Ψ(µ, ν) = Ψ(−µ,−ν)

And that—by a familiar parity property of the Hermite polynomials—requires
that n1 and n2 must be either both even or both odd, which in either case
entails that

n1 + n2 + 1 must necessarily be odd

Half of the wave functions supplied by the oscillator trick must therefore be
discarded , and these are precisely the states responsible for the supernumerary
spectral values, the states required to express the distinction between
• SO(2), the known dynamical group of the 2-dimensional oscillator, and
• O(3), the advertised dynamical group of the 2-dimensional hydrogen.18

Polar analysis led to eigenfunctions which can be developed as functions
of µ and ν by means of

Gj,�(µ, ν) = Exp
[
− µ2+ν2

(2j+1)a0

]
∗

(
2(µ2+ν2)
(2j+1)a0

)Abs[� ]

∗ LaguerreL
[
j −Abs[2 ], 2 Abs[2 ], 2(µ2+ν2)

(2j+1)a0

]
∗ ComplexExpand

[(
µ2−ν2

µ2+ν2 + i 2µν
µ2+ν2

)�
]

17 See, for example, Schiff’s §13.
18 The point was first appreciated by Cisneros & McIntosh,13 who also took

parabolic separation as their point of departure.
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while parabolic analysis gave

Hn1,n2(µ, ν) = Exp
[
− µ2+ν2

(n1+n2+1)a0

]
∗HermiteH

[
n1,

√
2µ2

(n1+n2+1)a0

]
∗HermiteH

[
n2,

√
2ν2

(n1+n2+1)a0

]
Specifically, we have

G0,0(µ, ν) = e−
µ2+ν2

a

G1,+1(µ, ν) = 1
3ae

−µ2+ν2

3a

[
2(µ2 − ν2) + 4iµν

]
G1, 0(µ, ν) = 1

3ae
−µ2+ν2

3a

[
3a− 2(µ2 + ν2)

]
G1,−1(µ, ν) = conjugate of G1,+1(µ, ν)

G2,+2(µ, ν) = 1
25a2 e

−µ2+ν2

5a

[
(4µ4 − 24µ2ν2 + 4ν4) + i(16µ3ν − 16µν3)

]
G2,+1(µ, ν) = 1

25a2 e
−µ2+ν2

5a

[
(4µ4 − 30aµ2 + 30aν2 − 4ν4)

+ i(8µ3ν − 60aµν + 8µν3)
]

G2, 0(µ, ν) = 1
25a2 e

−µ2+ν2

5a

[
2(µ2 + ν2)2 − 20a(µ2 + ν2) + 25a2

]
G2,−1(µ, ν) = conjugate of G2,+1(µ, ν)
G2,−2(µ, ν) = conjugate of G2,+2(µ, ν)

and

H0,0(µ, ν) = e−
µ2+ν2

a

H2,0(µ, ν) = 1
3ae

−µ2+ν2

3a (8µ2 − 6a)

H1,1(µ, ν) = 1
3ae

−µ2+ν2

3a (8µν)

H0,2(µ, ν) = 1
3ae

−µ2+ν2

3a (8ν2 − 6a)

H4,0(µ, ν) = 1
25a2 e

−µ2+ν2

5a (64µ4 − 480aµ2 + 300a2)

H3,1(µ, ν) = 1
25a2 e

−µ2+ν2

5a (64µ3ν − 240aµν)

H2,2(µ, ν) = 1
25a2 e

−µ2+ν2

5a (64µ2ν2 − 80aµ2 − 80aν2 + 100a2)

H1,3(µ, ν) = 1
25a2 e

−µ2+ν2

5a (64µν3 − 240aµν)

H0,4(µ, ν) = 1
25a2 e

−µ2+ν2

5a (64ν4 − 480aν2 + 300a2)
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By inspection

G0,0 = H0,0

G1,+1 = 1
4 (H2,0 −H0,2) + i 1

2H1,1

G1, 0 = − 1
2 (H2,0 + H0,2)

G1,−1 = 1
4 (H2,0 −H0,2)− i 1

2H1,1

G2,+2 = 1
16 (H4,0 + H0,4)− 3

8H2,2 + i 1
4 (H3,1 −H1,3)

G2,+1 = 1
16 (H4,0 −H0,4) + i 1

8 (H3,1 + H1,3)
G2, 0 = 1

32 (H4,0 + H0,4) + 1
16H2,2

G2,−1 = 1
16 (H4,0 −H0,4) − i 1

8 (H3,1 + H1,3)
G2,−2 = 1

16 (H4,0 + H0,4)− 3
8H2,2 − i 1

4 (H3,1 −H1,3)




(18)

The short of it is this: polar analysis and parabolic analysis erect distinct bases
within each of the respective energy eigenspaces; i.e., on each of the “branches”
of the “state tree” shown in Figure 4 (lower). Those bases are interrelated by
linear transformations (18) which, in the absence of normalization, we cannot
expect to be unitary, but which are of a form

(exponential)·(power)·(Laguerre) =
∑

(gaussian)·(Hermite)·(Hermite)

frequently encountered in the handbooks of higher analysis.

We confirm by calculation that the functions Gj,�(µ, ν) are eigenfunctions
of

Lz = �

2i

[
µ ∂

∂ν − ν ∂
∂µ

]
: LzGj,� = 2� ·Gj,�

and that the functions Hn1,n2(µ, ν) are eigenfunctions of

H = −k
[

1
2a0∇2

parabolic + 2
µ2+ν2

]
∇2

parabolic = 1
µ2+ν2

{(
∂
∂µ

)2+
(

∂
∂ν

)2
}

Specifically, HH0,0 = −E0H0,0 and

H


H2,0

H1,1

H0,2


 = − 1

9E0


H2,0

H1,1

H0,2




H




H4,0

H3,1

H2,2

H1,3

H0,4


 = − 1

25E0




H4,0

H3,1

H2,2

H1,3

H0,4
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with E0 = 2k/a0 = 4·mk2/2�2. The same can be said of the functions Gj,�(µ, ν)
which can, by (18), be assembled from these respective sets of eigenfunctions.
All of which is reassuring, but hardly unexpected. More informative is the fact
that computation based upon

Kx = k
{
− µ2−ν2

2

[
1
2a0∇2 + 2

µ2+ν2

]
+ 1

4a0

[(
∂
∂µ

)2−
(

∂
∂ν

)2
]}

Ky = k
{
− µν

[
1
2a0∇2 + 2

µ2+ν2

]
+ 1

2a0
∂
∂µ

∂
∂ν

}
gives

Kx




H0,0

H2,0

H1,1

H0,2

H4,0

H3,1

H2,2

H1,3

H0,4




=




0

− 2
3H1,1

− 1
3 (H2,0 + H0,2)
− 2

3H1,1

− 4
5H3,1

− 1
5 (3H2,2 + H4,0)
− 2

5 ( H3,1 + H1,3)
− 1

5 (3H2,2 + H0,4)
− 4

5H1,3




Ky




H0,0

H2,0

H1,1

H0,2

H4,0

H3,1

H2,2

H1,3

H0,4




=




0

− 2
3H2,0

0
+ 2

3H0,2

− 4
5H4,0

− 2
5H3,1

0
+ 2

5H1,3

+ 4
5H0,4




We are brought thus to this pretty conclusion:
• polar separation yields simultaneous eigenfunctions Gj,� of H and Lz;
• parabolic separation yields simultaneous eigenfunctions Hn1,n2 of H and Ky.

The only surprise here is that we have encountered Ky where—for no good
reason, when you think about it—we might have expected Kx.

6. Concluding remarks. “2-dimensional hydrogen” has revealed itself to be so
valuable as a theoretical laboratory as to be, in my opinion, quite undeserving
of its almost universal neglect. It mimics in every detail the formal depths of
• the celestial Kepler problem
• the quantum physics of real hydrogen,

but presents analytical problems which are at every turn simpler, and graphical
opportunities which are invariably more immediate.

The energy spectrum of 2-dimensional hydrogen was found to be depressed
relative to that of real hydrogen. Which posed a still -unresolved problem: How
did Bohr, with his essentially 2-dimensional hydrogen model, manage to obtain
results in agreement with 3-dimensional observation? Since, moreover, the
ground state of a simple oscillator lies lower than that of an isotropic oscillator,
and the ground state of a particle confined to an interval (length 2) lies lower
than that of a particle confined to a box (area 22), we are led to ask: Can it be
shown that dimensional reduction invariably implies spectral depression?

The Kepler problem is separable—actually separable in the sense of
Liouville—in infinitely many coordinate systems (confocal conic coordinate
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systems of every design); to speak of its “double separability” is rather grossly
to underestimate the reality of the situation, but to emphasize a feature which
the Kepler problem shares with the isotropic oscillator, a feature which appears
to be tied up (but in a way which I do not know how to make precise) with
universal orbital closure (Bertrand’s theorem) and—more transparently—with
the emergence of “hidden symmetry.” In quantum mechanics the latter
circumstance becomes manifest as “accidental degeneracy;” i.e., as a spectral
degeneracy beyond that explicable by the overt geometrical considerations.19

The theory of hydrogen serves at this point as a tutorial entry point to issues
of latently far greater generality and importance.20

We were surprised to witness the emergence of the isotropic oscillator as
a system not merely (in its orbital closure, double separability and hidden
symmetry) analogous to but directly relevant to the hydrogenic system. The
connection has been seen to be most vivid and direct when one works in
parabolic coordinates, but is, of course, intrinsically coordinate-independent.
In the much more elaborate work from which this report has been extracted21

I show how ladder operators associated with the isotropic operator can be used
to reconstruct the Keplerean Lenz operators which, as we have seen, permit
one to “walk around” among the hydrogenic eigenstates.

I note finally that ellipses are ellipses, whether encountered in oscillators
(which assign distinguished status to the center), planetary systems, atoms
(which distinguish one focus at the expense of the other). . . or polarized optical
beams. The latter subject gave rise in  to the “Stokes parameters” which
were brought by Poincaré () into contact with precisely the mathematics
which has concerned us (SU(2) and all that), and which in more recent times
have given rise to an elegantly powerful technique for describing beam statistics
and the beam-manipulation properties of optical devices. In some recent work22

I have explored some of the mechanical applications of that body of theory.

19 Can one devise a classical analog of the quantum “spectrum” which is
sharp enough to support a concept of “accidental degeneracy”?

20 In the early spring of  I directed the attention of Harold McIntosh, then
a fellow graduate student at Brandeis University, to the recent appearance of
S. P. Alliluev, “On the relation between “accidental” degeneracy and “hidden”
symmetry of a system,” Soviet Phys. JETP 6, 156 (1958). Alliluev treats (i)
n-dimensional hydrogen and (ii) the 2-dimensional oscillator in a way which
suggested to McIntosh that “there is a lot Alliluev does not know.” McIntosh
thereupon sat down and very quickly wrote “On accidental degeneracy in
classical and quantum mechanics,” AJP 27, 620 (1959), which has since become
a minor classic in the field, and contains good references to the older literature.
The term “dynamical group” was coined by A. O. Barut; see his Dynamical
Groups and Generalized Symmetries ().

21 “Reduced Kepler problem in elliptic coordinates” ().
22 “Ellipsometry: Stokes’ parameters & related constructions in optics &

classical/quantum mechanics” (, revised ).


